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—— Abstract

A motif is defined as a frequently occurring pattern within a (multivariate) time series. In recent
years, various techniques have been developed to mine time series data. However, only a few studies
have explored the idea of using motif discovery in temporal association rule mining, and only limited
to rules that do not temporally relate motifs with each other. Interval-based temporal association
rules have been recently defined and studied, along with the temporal version of the known frequent
patterns, and therefore, rule extraction algorithms (such as APRIORI and FPGrowth). In this work,
we first define a simple algorithm to discover motifs from a dataset of multivariate time series, and
build over them a vocabulary of propositional letters; second, we show how apply the temporal
version of association rule discovery on such a vocabulary. With a careful choice of motifs, their
lengths, and the thresholds for propositional letter construction, the extracted rules turn out to be
very natural, with a very high level of interpretability. We apply our methodology to time series
datasets in the fields of hand signs execution and gait recognition, and we discuss the resulting rules
from an interpretability point of view.
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1 Introduction

In machine learning we typically separate between functional and symbolic learning. The
former encompasses all algorithms and strategies for learning a function that represents
the theory underlying a certain phenomenon. The latter, on the other hand, consists of
learning a logical description that represents that phenomenon. In the context of modern
explainable artificial intelligence, natively symbolic approaches maybe preferred over a
posteriori extraction of rules from black-box systems: as O’Neil puts it [16], opaque models
are the dark side of big data. Classification and rule extraction are, among others, typical
problems of machine learning; while classification can be dealt with using both functional
and symbolic learning, rule extraction is essentially symbolic. From a logical standpoint,
canonical symbolic learning methods are all characterized by being based on propositional
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logic, and by being designed for static data, in which every instance is described by the
value of n attributes. In general, temporal data cannot be successfully dealt with within
the same schema in a native way. The standard approach to information extraction from
temporal data starts with a pre-processing phase designed to abstract non-static data so
that their aspect becomes static again (e.g., by averaging the value of attributes along all
dimensions), and that off-the-shelf static symbolic methods can be used. Modal, and in
particular temporal symbolic learning [14, 18] takes a different point of view: modal symbolic
methods are characterized by being based on modal logic (e.g., temporal logic) so that
non-static data can be dealt with natively, and that the extracted knowledge takes the form
of interpretable modal logic formulas. So far, modal symbolic learning has been mainly
focused on classification, but recent approaches suggested that association rule extraction
can benefit of a similar approach [15, 20], with the introduction of the modal adaptation of
the known frequent set extraction algorithms, namely APRIORI [1] and FP-Growth [8], to
the modal case.

The temporal case is considered a representative example to illustrate the qualities and
the characteristics of modal association rules. Nevertheless, the original approach presents
some important limitations, originated in the basic definition of temporal alphabet, which
may cause difficult-to-interpret association rules.

One way to overcome the limits in alphabet definition towards temporal association
rule extraction is to consider motifs. Motifs in time series are patterns that are considered
interesting because they are frequently occurring, and their name is due to the resemblance
of such a concept with its discrete counterpart in computational biology [10]. Motif discovery
for time series was introduced in 2003 [5], and several improvements on the original technique
were introduced afterwards. A time series motif is naturally interpreted on an interval,
and via the use of thresholds one can immediately transfer the idea of motif to the idea of
propositional letter that encapsulates a motif. In this way, a natural definition of alphabet
emerges, that allows us to use interval temporal logic for temporal rule extraction.

In this paper, we consider the problem of temporal rule extraction from time series using a
motif-based alphabet. We adapt the original definition of local support, introduced in [15, 20],
to accommodate motifs in a suitable way, and we design a simple adaptation of the algorithm
ModalAPRIORI [20] with such a modification. Then, we apply our methodology to two
temporal datasets, and show how the obtained rules have an immediate natural language
translation. Our code is fully open-source and available!.

2 Background

Motifs and motif discovery. Motif discovery for time series was introduced in 2003 [5],
generating quite a body of research. From a practical point of view, motifs have been
applied to solve problems in a wide variety of domains such as bioinformatics, speech
processing, robotics, human activity understanding, severe weather prediction, neurology and
entomology; see, among many others, [2, 21, 22]. From a theoretical one, the research has
focused on extensions and generalizations of the original work, especially in the attempt to
improve scalability; see [12, 17], among others. Motif discovery falls into two broad classes:
approzimate and ezact motif discovery; here, we focus on the latter. Virtually every time

1 See https://github.com/aclai-lab/ModalAssociationRules.jl, part of the project Sole.jl.
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series data mining technique has been applied to the motif discovery problem, including
indexing, data discretization, triangular-inequality pruning, hashing, early abandoning.

» Definition 1. A time series is a sequence T : t1,...,ty of N real-valued observations. A set
of T time series T1, ..., T, is called multivariate time series. A regionTij : t;,...,t; of j—i+1
consecutive observations in a time series is called a subsequence. Given two subsequences T;
and Ty, their distance is the Euclidean distance between the Z-normalized version of T; and
Ty .

We can take a subsequence and compute its distance to all subsequences in the same time
series.

» Definition 2. Given an N-observations time series T and a subsequence T;;, the distance
profile D; is the vector of all distances between T;; and Ty (k+j-i+1), for every 1 <k < N.

Observe that given a time series T and a subsequence Tj;, the value of D; at (near) the point
i is (close to) 0, by definition. While a value of 0 in D; at some point k far away from i is
called a match, the (near) 0 values in the vicinity of i are referred to as trivial matches. Given
a parameter s (called shadow), the distance profile D; at points in the interval [i — s,i + s]
can be artificially set to co in order to avoid trivial matches. Now, given a time series T of
N points and a length [ < N, there are exactly N — [ + 1 points at which a subsequence of
length [ may start.

» Definition 3. Given a time series T, a length I, and a shadow s, the full distance matrix
My s (or, simply, M, when all parameters are clear from context) is the squared matriz of
dimension N — 1 +1 whose (i, j)-th entry is the distance between the subsequences Tj(i+i-1)
and Tj(j41-1). Given the full distance matriz M, the matrix profile P is the vector that at
position i contains the value of the minimal distance that any subsequence Tj(j41-1) presents
with T;(i+1-1)-

Two subsequences T;(;4) and T(j4+;) with a distance less than some threshold @ are instances
of a motif. Computing the matrix profile of a time series enables us to compute its motifs.

The literature on motif discovery is relatively rich, and different libraries implementing the
most efficient algorithms for solving this problem are currently being maintained by several
groups. The ecosystem of software solutions into which this technique falls is continually
expanding; as of 2024 a primitive directive in Matlab to efficiently calculate matrix profiles
was introduced. In this work, we integrated into such ecosystem the framework Sole.ji%, an
end-to-end open source Julia solution for symbolic learning and reasoning with non-tabular
data, such as multivariate time series, enriching it with MatrizProfile.jP, that includes an
efficient implementation of STAMP [25], for the computation of the matrix profile of a time
series. In this work, we focus on a particular kind of motif called snippet; snippets can be
seen as the most representative motifs in a time series [11], that is, they can be sorted by
how much of a time series is explained by each snippet.

Modal association rules extraction. Rule-based methods are ubiquitous in modern
machine learning and data mining applications [7], that aim at learning regularities in
data which can be expressed in the form of if-then rules. In this paper, we are interested
in descriptive (or association) rules, that collectively cover the instances’ space. Fixed

2 https://github.com/aclai-lab/Sole.jl
3 https://github.com/baggepinnen /MatrixProfile.jl
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HS modality Definition w.r.t. the interval structure Example
i—J
(A) (after [i, j/IRAl.j] <o j=1 i’
J J J
(L) (later [i, j/IRLIY, 1 & j<i’ iy’
J J J
(B) (begins) [i,/IRBli",j'] & i=i'Aj <] iy
(E) (ends) L. /IREL, '] & j=j Ani<i e
(D) (durin [, /IRp[i’,J'] o i<i’'Anj <] 7 —_
g J J J<J i J
(0) (overlaps)  [i,jIRolV',j'] & i<i'<j<j [ ———

Table 1 Allen’s relation and their notation within HS; equality and inverse relations are omitted.

an alphabet P = {p1,...,px}, a propositional rule is an object of the type p : X = Y,
where X C P is called antecedent, Y C P is called consequent, and X NY = (. The use
of the non-logical symbol = emphasizes the fact that association rules are not logical
implications. Following the standard literature, interesting association rules are extracted
via statistical considerations: a set of propositional literals, typically named items or itemset
in this scenario [1], X UY is considered interesting when it is frequent, that is, if it occurs
more often than a predetermined threshold referred to as minimum support, and a rule
X = Y is extracted if the ratio between the support of X and that of X UY is higher
than another predetermined threshold known as minimum confidence. Most association
rule mining techniques leverage the computation of support and confidence measures (i.e.,
the support-confidence framework) to mitigate the combinatorial explosion due to itemsets
generation, which is a #P problem [23, 24], but many of the generated rules could still be
filtered out as non-interesting; on top of objective measures, the practice suggests that the
interestingness level of a rule should always be double-checked by an expert. However, a
wide variety of objective interestingness measures and statistical tests can be used to reveal
important insights about the rules; such measures are based on the definition of support and
can augment the support-confidence framework to further reduce the number of rules in the
output.

The idea of extending association rules to the case of non-tabular data, generally repre-
sented as modal data, that is, in which every instance is described as graph, was first introduced
in [15, 20], in which the generalization of the known rule extraction algorithms APRIORI
and FP-Growth were proposed (respectively ModalAPRIORI and ModalFP-Growth). From
this general setting, it is possible to specialize the rule definition and extraction to the
(qualitative) temporal case, on the line of [3].

Temporal association rule extraction. While classical association rules are designed
for propositional patterns to emerge (i.e., items are not temporalized, and their co-presence
is assumed to be contemporary), temporal association rules are designed to generalize this
idea to patterns with a temporal component. The natural choice to describe temporalized
co-occurrence of events or patterns with a duration is interval temporal logic. The standard
choice for temporal logic of intervals is the modal logic defined over Allen’s interval-interval
relations. Given a linear order D, an interval on D is defined as a pair i < j, where i, j € D.
Allen’s relations relate any two intervals in one of thirteen possible binary relations, as shown
in Tab. 1, where we omit equality and inverse relations for simplicity.

» Definition 4. Let X = {A,Z, L L,B,B,E,E,D,D, O,5,=}. The well-formed formulas of
the Halpern and Shoham Modal Logic of Time Intervals (HS, for short) are built from an
alphabet P, the classical connectives V and —, and a modality for each Allen’s interval relation,
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as follows:

pu=plopleVve | (X)e,

where p € P and X € X. The other propositional connectives and constants (i.e., Y1 Ao =
=1V o, — Yo = - Vigy and T =pV —p), as well as, for each X € X, the universal
modality [X] (e.g., [A]lg = ~(A)=¢), can be derived in the standard way.

A formula of HS is interpreted over an interval model, defined as pair 7" = (D, V)%, where
V : (D) — 2% is a wvaluation function from the set I(D) = {[i,j],i < j,i,j € D} of all
intervals that can be built on D.

» Definition 5. Given an interval model T based on the alphabet P, an interval [i, j] in
it, and a formula ¢ of HS, we say that ¢ is satisfied by T at [i,j], and we denote it by
T, i, j] v @, if and only if:

pGVH i iff ¢=p;
T, L, il vy iff @ =-y;
T, [, jl vy or T,[0, j1 I+ & iff o=y V&

T,[i,j'1 v for some [i’,j'] such that [i, jIRx[i’,j'] iff ¢={(X )¢

Interval temporal logic gives us a way to naturally describe temporal association rules, as
time series can be naturally seen as interval models. Let ¥ = {71,753, ..., 7.} be a set of
(multivariate) time series, or temporal dataset, and fix a propositional alphabet P; let us also
assume that each time series in T is based on the same temporal domain D. Each single
multivariate time series 7~ (e.g., the temporal history of an hospitalized patient) is a collection
of n time series Ty, ..., T, (e.g., the collection of all time-changing values that describe an
hospitalized patient); elements of # are naturally associated to a specific time series (e.g.,
the truth value of high fever is associated to the, time-changing, body temperature of an
hospitalized patient). In this way, if 7 is a multivariate time series (i.e., an interval model),
[, j] is an interval, and ¢ an interval formula, the notion of 77, [, j] I ¢ can be interpreted
as the notion of the multivariate time series T satisfies ¢ at [i, j].

» Definition 6. Given an alphabet P, a temporal literal (or temporal item) A is defined by
the following grammar:

Ai=p [ (X)A] [X]A,
where p € P and X € X. The set of all possible temporal items is denoted by Ap.

A temporal itemset is a set of temporal items, and temporal rules antecedents and consequents
are temporal itemsets. The notion of support is generalized to the temporal case, as follows.

» Definition 7. Let T be a temporal dataset, Ap be the set of temporal items built on the
alphabet P, and let X C Ap be an itemset. The local support of X on some instance T € I
1s defined as the relative frequency of X holding on all the possible intervals:

I{li. /] € I(D) | T, [, j] = X}
[1(D)| ’

Lsupp(T,X) =

4 We intentionally use the same symbol for interval model and multivariate time series, to convey the
idea that the latter can be interpreted as the former.
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and, given a certain minimum local support threshold s; € (0,1] C R, the global support of X
on T relatively to s; is defined as:
{7 € T | Lsupp(T,X) > si}|

1% '

ModalAPRIORI and ModalF P-Growth can be used to extract temporal patterns as a particular
case of modal patterns; an itemset X is said to be frequent on I or globally frequent if its

gsupps, (T, X) =

global support is greater than a minimum global support threshold s,, and after extracting
all the globally frequent itemsets and using them to generate rules, we need to judge which of
the latter are association rules and which are not, employing, as already mentioned, suitable
interestingness measures. This has been suggested, for example, in [15], where it is proposed
to use standard temporal information extraction functions to devise a suitable propositional
alphabet. The primary characteristics of such information extraction functions is that they
can be applied to an interval of time and reduce the subseries in that interval to a scalar
value. In this work, we show how, in general, this strategy can be improved by replacing
scalars with motifs (and, specifically, snippets) for alphabet building; however, this requires
adaptation to the mining algorithms.

3 Extracting Temporal Association Rule from Motifs

Alphabet discovery in time series: naive approach. In order to generalize association
rule mining to the temporal scenario, we need to enhance the support-confidence framework
by integrating a suitable strategy to capture relevant temporal aspects from data. The notion
of feature extraction function is naturally applied to this case. Given a multivariate time
series 7 = {Ty,...,T,}, one can consider a set of functions ¥ = {Fy,..., Fx}, where each
function F is defined as F : R? — R for some natural value d < N, and then apply such
functions to all intervals. Via arbitrarily selecting thresholds «, 8, one can then create an
alphabet

P={a<F({T)<B|FeF, TeT,a c RU{-0},B€RU{+0}}.

Letters in £ are immediately interpreted over intervals, as follows: given an interval [i, j],
F is applied to the segment T; ; to obtain a scalar value that is then compared with @ and
B. Theoretically speaking, this definition allows mining temporal association rules; indeed,
given an interval model 7, an alphabet £ and the set of temporal items Ap built over P,
the local support semantics is well-defined.

Unfortunately, this approach may introduce strong bias during model checking, leading
to a sterile mining.

» Example 8. Consider Fig. 1, in which the feature extraction function maximum is applied
to every subsequence of the time series depicted on the left. As a result, we obtain the same
scalar for every interval including [2, 3].

Behaviours such as the above one constitute a major obstacle towards interpretability, possibly
leading to association rules with promising interestingness levels which, however, encode
trivialities. More refined feature extraction functions (e.g., hctsa [6], catch22 [13]) do not
mitigate this problem, since it is inherently caused by our alphabet definition.

Alphabet discovery in time series: an approach with motifs. In order to avoid
degenerate situations such as the one described in the above example, we can modify the
definition of alphabet. To this end, we first extend the notion of representative motifs for
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1 4 —
: 3 4
—
<
1 5 2 4

Figure 1 Maximum feature extraction function applied to the time series in blue on the left, and
to all its subintervals. The value of such function, which is highlighted in red, is identical in every
interval including [2, 3].

motif extraction from a temporal dataset, via a generalized full distance matrix My . This
allows us to obtain an collection of representative motifs from a temporal dataset T:

Az ={u | p is representative in T}.

Then, fixed a distance function § and a constant @, we define a motif-based temporal alphabet
as:

P={6(T,u) <a|TeT,uecAz,acR}.

As in the previous case, letters in £ have an intuitive and immediate interpretation on
intervals: a given p € P is true on a given segment 7;; if and only if the behaviour of T
within the segment is close enough to the motif y encapsulated by p.

» Example 9. Consider the example in Fig. 2. The two individual time series represent,
respectively, the position of the right hand on the y-axis (71) and on the x-axis (Ts),
in the context of a body-tracking data analysis exercise whose aim is to describe some
specific movement in the most rigorous manner. Assume that motifs p; and s had been
extracted from a temporal dataset T of similar movements. We define two temporal literals
p =06(T1,u1) < 1.0 and 2 ::= (BY6(To, u2) < 1.0, where § is the Z-normalized Euclidean
distance and (B) is the Allen’s relation begins, and consider an hypothetical association rule
A = p = A. As it can be seen, such a rule can easily be translated to natural language,
without being limited by the hidden redundancy of a naive alphabet definition: when the
right-hand moves away from the hip to the right at an approzimate speed of 0.9 distance units
per time unit, for two consecutive time units, then the movement has started with the same
hand being at the highest point.

Temporal association rules discovery with motifs. In order to lift the motif-based
definition of alphabet to the idea of association rule extraction, we need to be able to compute
the support of temporal items and itemsets built on it. Unfortunately, simply applying our
original approach based on local support does not provide a suitable solution.
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Bivariate time series M = {T1,T>} and distances w.r.t. motifs {u1, uo}

2 %
— T
— //_\ /
15 |— Ty
H2

Value
—

Time

Figure 2 Bivariate time series consisting of 77 and T, respectively in blue and green, and two
motifs u1 and po, respectively in red and magenta. Since |u1| = 1, the euclidean distance 6(Tq, u1)
is calculated for all the 1-length intervals of T;. When the distance is small enough, it is highlighted
with a colored area. Similar applies for To and us.

» Example 10. Consider, again, the situation depicted in Fig. 2, and the problem of
computing the local support of p, A, and {p, A} as defined in Ex. 9. Since motifs have a
predetermined length in terms of time units, p, for instance, would have a counter-intuitive
upper bound of %, since it cannot hold on intervals of length different from 2.

Computing the local support of an item as the ratio between the number of intervals that
satisfy that item and the number of intervals that may potentially satisfy it would be the
simplest solution to the above problem; for items without temporal modal connectives, in
particular, this requires to examine only intervals of the same length as the motif encapsulated
by it. This solution, however, may not be optimal for temporal items that are not literals, as
it may cause an unwanted effect similar to the one that emerged with the naive alphabet. A
more elaborate solution requires the idea of anchored itemset.

» Definition 11. An itemset X is said to be anchored if and only if contains at least one
non-temporal item, and all non-temporal items in it are based on motifs of the same length;
the subset Q C X of non-temporal items is called anchor of X. Let [(Q) denote the length of
the interval on which an anchor may hold.

In this way, the length of intervals that may potentially satisfy the entire itemset is fixed,
allowing us to define the frequency of that itemset in a truly representative way.

» Definition 12. Let T be a temporal dataset, Ap be the set of temporal items built on the
motif-based alphabet P, let X C Ap be an anchored itemset, and let Q C X be its anchor.
The motif-based local support of X on some instance T € T is defined as:

H[i,jl1 € I(D) | T, [i, j] ¥ X}
{li,j1 € I(D) | j—i+1=1(Q)}
and, given a certain minimum motif-based local support threshold s; € (0,1] € R, the
motif-based global support of X on I relatively to s; is defined as:

T € T | mblsupp(T,X) = s}
(] '

mblsupp(T,X) =

mbgsupps, (T, X) =
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Using the modified version support, and computing the other interesting measures based
on it, we now perform a series of rule extraction experiments.

4 Experiments

In our experiments, we consider two well-known public datasets concerning human action
and gait recognition, namely NATOPS [19] and HuGaDB [4]; given the intuitive nature of

the data, extracted rules will be interpretable even to the non-expert, unlike other scenarios.

Although both datasets are labeled and designed for classification, our objective is to describe
common patterns within the same class, and to express them in natural language.

The experimental setup is as follows. First of all, we establish the values for the minimum
local and global support, and for the minimum confidence, respectively s;, s, and c. Given a
dataset, we focus on all the instances belonging to a specific class and concatenate (each
time series of) its instances. We then proceed to extract the most representative motifs from
each time series by leveraging the algorithm Snippet-Finder proposed in [11]; to this end, we
set reasonable lengths for potential motifs. After the motif extraction phase, we define an
alphabet P that takes into account each motif y, the Z-normalized Euclidean distance ¢,
and a threshold a, the latter being the s,-th percentile of the values obtained by computing
0 between u and all subintervals of the corresponding time series. We define the set of
temporal items Ap by considering every Allen’s relation, with the exception of (L), which
tends to introduce trivial redundancies in local support computation (i.e., fixed an anchor,
the intervals covered by later relation are significantly more numerous than those covered by
the other relations).

We choose to mine frequent itemsets by leveraging ModalAPRIORI, generating all
emerging association rules starting from closed itemsets, that is, itemsets whose none of their
immediate supersets have exactly the same support, and filtering out the less interesting
ones using both confidence and lift. Lift, in particular, is defined as the ratio between the
confidence of a rule and the global support of its consequent; it assesses the degree to which
the occurrence of the antecedent “lifts” the occurrence of the consequent, that is, how much
they are positively correlated (i.e., lift is greater than one) or independent [9]; it has an
immediate modal and temporal counterpart, given that its only based on support.

In order to keep the amount of generated rules below a reasonable number, we limit the
length of each frequent itemset, as well as the length of both the consequent and antecedent
of each rule, and impose the latter to be anchored.

Experiment 1: NATOPS. Each NATOPS instance is a time series of 51 timestamps,
representing the x,y,z coordinates of sensors placed on various body parts of subjects
performing aircraft handling signals. Since the time between two consecutive timestamps
is approximately five hundredths of a second, we decided to extract the top 5 motifs with
length 10 and the top 3 with length 20, in order to capture qualitatively appreciable patterns;

shorter subsequences would bring little informativeness, while longer one would be too coarse.

NATOPS signals are standardized in the Naval Air Training and Operating Procedures
Standardization (NATOPS) manual. The dataset includes several classes, but we choose
focus on three for simplicity, namely I have command, Not clear and Locked wings, whose
typical signals are depicted in Figure 3.

In Tab. 2, rules are encoded as follows. First, each literal is formatted in a compact
manner, omitting any reference to motifs and thresholds, as well as the distance function:
X, Y,z indicates coordinates, with subscripts indicating body parts (r is right, [ is left, & is
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Locked wings

Not clear

I have command

Figure 3 Three typical movements of NATOPS, namely I have command, Not clear and Locked
wings. The x-axis encodes left (low values) and right positions for each considered body part of
the operator, while the y-axis encodes down (low values) and high; the z-axis is not represented
for simplicity. In the leftmost figure, the operator traces the blue arc with his right hand, starting
from the rest position, up until stretching the arm above the head, while the right elbow follows as
indicated by the red signal. In the middle figure, both right hand and elbow follows a movement
similar to that just described, but the right hand stops at the height of the shoulder before returning
to rest position; during the part of the movement highlighted with the blue dots, the thumb is
oriented toward the floor. In the rightmost figure, the blue and red signals are similar to those in
the leftmost figure, but the left arm, in orange, pivots on the left elbow, in violet, to touch the right
elbow with the left hand.

Rule Target class Measures
Y/P A Z{}:'mz = (O)xiehft&mve” A (B)y?isz&up I have command | ¢=1.0, [=6.70
Zfemm A(AYZISITact = (A)Zrerract I have command | ¢ =1.0, [=4.0

up&down rest&right
Y& = (D)x/ 7SI A (B ydown

I have command

c=0.48, =322

XIS\ XTI = (Byyrestiedown Not clear c=0.81, [ =5.40
ydown a (ATt = 0yyrest n Lo Not clear ¢=0.60, I =3.27

up right up up retract
Y, ANXpe ADYY,, =Y, AND)zZS

Lock wings

¢=0.86, [ =4.29

left
Zp®t n DY = By

Lock wings

c=1.0,1=3.75

Table 2 Association rules extracted from NATOPS dataset, their associated class and the value
of confidence and lift meaningfulness measures. Each literal is formatted in a compact manner,
omitting any reference to motifs and thresholds, as well as the distance function. First, x,y,z
indicates coordinates, with subscripts indicating body parts (r: right, /: left, h: hand, e: elbow,
t: thumb) and where superscripts give an intuition about the movement captured by the motif
underlying the literal. Second, an uppercase literal denotes a longer movement (20 time unites,
approximately 1 second), and a lowercase one denotes a shorter one (10).

hand, e is elbow, and r is thumb), and superscripts give an intuition about the movement
captured by the motif underlying the literal. Second, uppercase (resp., lowercase) coordinates
denote the length of the underlying motif: uppercase indicates 20 time units (approximately
1 second), and lowercase indicates 10 time units (approximately 3 of a second).

Let us the most interesting association rules in Tab. 2, which show high confidence and
lift and would not probably be naturally deducible from an inattentive high-level description
of the corresponding movement. The first rule of the class I have command can be read
whenever the right hand of the operator is completely stretching in front of him/her and their
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Example of motif for right thigh x

—— Walking
2 .
—— Running

Normalized acceleration

i
0 10 20 30 40 50
Time units

Figure 4 (Left) Location of sensors in HuGaDB. (Right) Two normalized motifs of length 50,
referring to the right thigh x-axis and extracted from Walking and Running classes. In the former
class, the thigh accelerates up and down more gently w.r.t. Running, where the signal is steeper.

elbow goes all the way up on the y-axis, the same elbow started the movement range in a rest
position and, near the end of the movement range, the operator’s right hand is moving to the
left, but will soon change direction. The first rule of the Not clear class can be translated
to when both the right hand and the right elbow of the operator are completely stretching to
the right, the thumb starts being relaxed but it is rotated downward after a couple of tenths
of a second; the second rule of the same class, instead, describes the descending part of the
movement. Finally, regarding the class Lock wings, its first rule tells us that if the right hand
completes its upward movement during the (slower) upward movement of the left elbow and
the opening of the right elbow to the right, then the left hand is going up too and, while doing
so, the left elbow slightly retracts on the z-axis w.r.t. the hip; the second rule tells us that
when the left elbow aligns with the hip while the left hand is going down, then the right
hand is moving to the left in the last half second of the movement.

Experiment 2: HuGaDB Data in the Database for Human Gait Analysis consists of
combined activities performed by various performers and recorded continually; for instance, a
participant might have walked, then ran and finally sat down. Data is collected from a body
sensor network of six wearable inertial sensors (accelerometers and gyroscopes) located on
the right and left thighs, shins and feet, and two EMG sensors placed on both quadriceps to
measure muscle activity, as shown in Fig. 4 (left-hand side). Different activities are segmented
through different labels and, among all the possible gait segments, we focus on Walking and
Running gaits.

We manipulated the dataset to obtain a set of instances where each time series has 100
timestamps and the variables are limited to the x and z axis for feet and thighs; operationally,
the y axis can be ignored, considering our target gaits. Upon observing of the signals, we
decided to extract the top 3 representative motifs of lengths 25 and 50 time units. An
example of two extracted motifs of length 50, both referring to the right thigh in the two
different gaits, are depicted in Fig. 4 (right-hand side): the motif extracted from Walking
gait consists of a gentle acceleration up and down, while the motif for Running gait is faster
and steeper.

Similarly to the case of NATOPS, we summarize some of the most promising association
rules in Table 3. The first two rules concern the class Walking, and states that when the right
foot accelerates forward (backwards), then the left (right) thigh accelerates upward immediately
after. Note that, since confidence is not so high, these rules may depend on the personal gait
of a performer. For example, both rules do not hold if the walk is performed by keeping the
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Rule Target class | Measures

x{;O"f = (AP Walking c=043,1=321
xffffck = (A)x,P Walking c=0.33, 1=250
X{;O"’ = (D)x"P A (D)xdown Walking c=10,1=1.67
xlff’ oM = (D)xP A (D)xglown Walking c=10,1=150
ZLPX3 N ZUREAO A (D)JEIOP 5 (D) 9SS TOM | Running | ¢ =10, 1=7.0
leffX2 A (D)xldtown&up&down = le:fXZ A er;jw Running c=0.67,1=2.33
x;’;“'k&f”’m = (A)zr‘tr”m&behmd Running c=0.25,1=1.75

Table 3 Association rules extracted from HuGaDB dataset, their associated class and the value
of confidence and lift meaningfulness measures. As before, literals codify their meaning in a compact
manner. First, x,z indicates the axis, with subscripts indicating body parts (r: right, I: left, f: foot,
t: thigh). Second, superscripts suggest the movement, and in particular, fbx2 indicates the double
repetition of a sudden frontal acceleration followed by a strong backward acceleration (and similarly
for bfx2). As before, uppercase literals denote longer motifs (50 time units), and lowercase ones
shorter motifs (25).

toes low. This symmetry emerges also in the next two rules, which could be rewritten as
while the right (left) foot accelerates forward, the right (left) thigh accelerates up and down at
a certain point.

In the case of the class Running, the first rule shows very high confidence and lift, thus
resulting independent of the personal idiosyncrasies of each candidate. It could be translated
to if the right thigh springs off forward and backward two times, the right foot goes up and
down and, at a certain point, the left foot accelerates downward and then stays still for
approximately 10 time units, then it means that the right foot considerably accelerates forward
at a certain point. The second rule highlights the complementarity between the left leg,
iteratively accelerating backwards and forward, and the right foot accelerates in opposite
directions. The last rule describes a trait for a particular kind of run, that is, a light ride in
which the right foot waits for the left foot, instead of moving complementarily at the same
time.

5 Conclusions

In this paper, we addressed the limitations of existing temporal symbolic learning methods
for rule extraction by introducing a motif-based approach to temporal alphabet definition.
By leveraging motifs-based frequently recurring patterns in time series, we proposed a more
interpretable and structurally robust framework for mining temporal association rules. Our
method resolves the biases introduced by naive alphabet definitions and enhances the semantic
clarity of extracted rules. We formalized the concept of anchored itemsets and introduced a
novel definition of motif-based local and global support, ensuring that the mined patterns
are both meaningful and computationally tractable. Experimental validation on temporal
datasets demonstrates the expressiveness and interpretability of the extracted rules, showing
promise for applications in explainable temporal data analysis.
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