
Temporal Association Rules from Motifs1

Mauro Milella #2

Department of Mathematics and Computer Science, University of Ferrara, Italy3

Giovanni Pagliarini #4

Department of Mathematics and Computer Science, University of Ferrara, Italy5

Guido Sciavicco #6

Department of Mathematics and Computer Science, University of Ferrara, Italy7

Ionel Eduard Stan #8

Department of Informatics, Systems, and Communications, University of Milano-Bicocca, Italy9

Abstract10

A motif is defined as a frequently occurring pattern within a (multivariate) time series. In recent11

years, various techniques have been developed to mine time series data. However, only a few studies12

have explored the idea of using motif discovery in temporal association rule mining, and only limited13

to rules that do not temporally relate motifs with each other. Interval-based temporal association14

rules have been recently defined and studied, along with the temporal version of the known frequent15

patterns, and therefore, rule extraction algorithms (such as APRIORI and FPGrowth). In this work,16

we first define a simple algorithm to discover motifs from a dataset of multivariate time series, and17

build over them a vocabulary of propositional letters; second, we show how apply the temporal18

version of association rule discovery on such a vocabulary. With a careful choice of motifs, their19

lengths, and the thresholds for propositional letter construction, the extracted rules turn out to be20

very natural, with a very high level of interpretability. We apply our methodology to time series21

datasets in the fields of hand signs execution and gait recognition, and we discuss the resulting rules22

from an interpretability point of view.23
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1 Introduction34

In machine learning we typically separate between functional and symbolic learning. The35

former encompasses all algorithms and strategies for learning a function that represents36

the theory underlying a certain phenomenon. The latter, on the other hand, consists of37

learning a logical description that represents that phenomenon. In the context of modern38

explainable artificial intelligence, natively symbolic approaches maybe preferred over a39

posteriori extraction of rules from black-box systems: as O’Neil puts it [16], opaque models40

are the dark side of big data. Classification and rule extraction are, among others, typical41

problems of machine learning; while classification can be dealt with using both functional42

and symbolic learning, rule extraction is essentially symbolic. From a logical standpoint,43

canonical symbolic learning methods are all characterized by being based on propositional44
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23:2 Temporal Association Rules from Motifs

logic, and by being designed for static data, in which every instance is described by the45

value of 𝑛 attributes. In general, temporal data cannot be successfully dealt with within46

the same schema in a native way. The standard approach to information extraction from47

temporal data starts with a pre-processing phase designed to abstract non-static data so48

that their aspect becomes static again (e.g., by averaging the value of attributes along all49

dimensions), and that off-the-shelf static symbolic methods can be used. Modal, and in50

particular temporal symbolic learning [14, 18] takes a different point of view: modal symbolic51

methods are characterized by being based on modal logic (e.g., temporal logic) so that52

non-static data can be dealt with natively, and that the extracted knowledge takes the form53

of interpretable modal logic formulas. So far, modal symbolic learning has been mainly54

focused on classification, but recent approaches suggested that association rule extraction55

can benefit of a similar approach [15, 20], with the introduction of the modal adaptation of56

the known frequent set extraction algorithms, namely APRIORI [1] and FP-Growth [8], to57

the modal case.58

The temporal case is considered a representative example to illustrate the qualities and59

the characteristics of modal association rules. Nevertheless, the original approach presents60

some important limitations, originated in the basic definition of temporal alphabet, which61

may cause difficult-to-interpret association rules.62

One way to overcome the limits in alphabet definition towards temporal association63

rule extraction is to consider motifs. Motifs in time series are patterns that are considered64

interesting because they are frequently occurring, and their name is due to the resemblance65

of such a concept with its discrete counterpart in computational biology [10]. Motif discovery66

for time series was introduced in 2003 [5], and several improvements on the original technique67

were introduced afterwards. A time series motif is naturally interpreted on an interval,68

and via the use of thresholds one can immediately transfer the idea of motif to the idea of69

propositional letter that encapsulates a motif. In this way, a natural definition of alphabet70

emerges, that allows us to use interval temporal logic for temporal rule extraction.71

In this paper, we consider the problem of temporal rule extraction from time series using a72

motif-based alphabet. We adapt the original definition of local support, introduced in [15, 20],73

to accommodate motifs in a suitable way, and we design a simple adaptation of the algorithm74

ModalAPRIORI [20] with such a modification. Then, we apply our methodology to two75

temporal datasets, and show how the obtained rules have an immediate natural language76

translation. Our code is fully open-source and available1.77

2 Background78

Motifs and motif discovery. Motif discovery for time series was introduced in 2003 [5],79

generating quite a body of research. From a practical point of view, motifs have been80

applied to solve problems in a wide variety of domains such as bioinformatics, speech81

processing, robotics, human activity understanding, severe weather prediction, neurology and82

entomology; see, among many others, [2, 21, 22]. From a theoretical one, the research has83

focused on extensions and generalizations of the original work, especially in the attempt to84

improve scalability; see [12, 17], among others. Motif discovery falls into two broad classes:85

approximate and exact motif discovery; here, we focus on the latter. Virtually every time86

1 See https://github.com/aclai-lab/ModalAssociationRules.jl, part of the project Sole.jl.

https://github.com/aclai-lab/ModalAssociationRules.jl
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series data mining technique has been applied to the motif discovery problem, including87

indexing, data discretization, triangular-inequality pruning, hashing, early abandoning.88

▶ Definition 1. A time series is a sequence 𝑇 : 𝑡1, . . . , 𝑡𝑁 of 𝑁 real-valued observations. A set89

of T time series 𝑇1, . . . , 𝑇𝑛 is called multivariate time series. A region 𝑇𝑖 𝑗 : 𝑡𝑖 , . . . , 𝑡 𝑗 of 𝑗 − 𝑖+190

consecutive observations in a time series is called a subsequence. Given two subsequences 𝑇𝑖91

and 𝑇𝑘, their distance is the Euclidean distance between the 𝑍-normalized version of 𝑇𝑖 and92

𝑇𝑘.93

We can take a subsequence and compute its distance to all subsequences in the same time94

series.95

▶ Definition 2. Given an 𝑁-observations time series 𝑇 and a subsequence 𝑇𝑖 𝑗 , the distance96

profile 𝐷𝑖 is the vector of all distances between 𝑇𝑖 𝑗 and 𝑇𝑘 (𝑘+ 𝑗−𝑖+1) , for every 1 ≤ 𝑘 ≤ 𝑁.97

Observe that given a time series 𝑇 and a subsequence 𝑇𝑖 𝑗 , the value of 𝐷𝑖 at (near) the point98

𝑖 is (close to) 0, by definition. While a value of 0 in 𝐷𝑖 at some point 𝑘 far away from 𝑖 is99

called a match, the (near) 0 values in the vicinity of 𝑖 are referred to as trivial matches. Given100

a parameter 𝑠 (called shadow), the distance profile 𝐷𝑖 at points in the interval [𝑖 − 𝑠, 𝑖 + 𝑠]101

can be artificially set to ∞ in order to avoid trivial matches. Now, given a time series 𝑇 of102

𝑁 points and a length 𝑙 ≤ 𝑁, there are exactly 𝑁 − 𝑙 + 1 points at which a subsequence of103

length 𝑙 may start.104

▶ Definition 3. Given a time series 𝑇 , a length 𝑙, and a shadow 𝑠, the full distance matrix105

𝑀𝑇,𝑙,𝑠 (or, simply, 𝑀, when all parameters are clear from context) is the squared matrix of106

dimension 𝑁 − 𝑙 + 1 whose (𝑖, 𝑗)-th entry is the distance between the subsequences 𝑇𝑖 (𝑖+𝑙−1)107

and 𝑇𝑗 ( 𝑗+𝑙−1) . Given the full distance matrix 𝑀, the matrix profile 𝑃 is the vector that at108

position 𝑖 contains the value of the minimal distance that any subsequence 𝑇𝑗 ( 𝑗+𝑙−1) presents109

with 𝑇𝑖 (𝑖+𝑙−1) .110

Two subsequences 𝑇𝑖 (𝑖+𝑙) and 𝑇𝑗 ( 𝑗+𝑙) with a distance less than some threshold 𝛼 are instances111

of a motif. Computing the matrix profile of a time series enables us to compute its motifs.112

The literature on motif discovery is relatively rich, and different libraries implementing the113

most efficient algorithms for solving this problem are currently being maintained by several114

groups. The ecosystem of software solutions into which this technique falls is continually115

expanding; as of 2024 a primitive directive in Matlab to efficiently calculate matrix profiles116

was introduced. In this work, we integrated into such ecosystem the framework Sole.jl2, an117

end-to-end open source Julia solution for symbolic learning and reasoning with non-tabular118

data, such as multivariate time series, enriching it with MatrixProfile.jl3, that includes an119

efficient implementation of STAMP [25], for the computation of the matrix profile of a time120

series. In this work, we focus on a particular kind of motif called snippet; snippets can be121

seen as the most representative motifs in a time series [11], that is, they can be sorted by122

how much of a time series is explained by each snippet.123

Modal association rules extraction. Rule-based methods are ubiquitous in modern124

machine learning and data mining applications [7], that aim at learning regularities in125

data which can be expressed in the form of if-then rules. In this paper, we are interested126

in descriptive (or association) rules, that collectively cover the instances’ space. Fixed127

2 https://github.com/aclai-lab/Sole.jl
3 https://github.com/baggepinnen/MatrixProfile.jl
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HS modality Definition w.r.t. the interval structure Example
𝑖 𝑗

𝑖′ 𝑗′

𝑖′ 𝑗′

𝑖′ 𝑗′

𝑖′ 𝑗′

𝑖′ 𝑗′

𝑖′ 𝑗′

⟨𝐴⟩ (after) [𝑖, 𝑗]𝑅𝐴[𝑖′, 𝑗 ′] ⇔ 𝑗 = 𝑖′

⟨𝐿⟩ (later) [𝑖, 𝑗]𝑅𝐿 [𝑖′, 𝑗 ′] ⇔ 𝑗 < 𝑖′

⟨𝐵⟩ (begins) [𝑖, 𝑗]𝑅𝐵 [𝑖′, 𝑗 ′] ⇔ 𝑖 = 𝑖′ ∧ 𝑗 ′ < 𝑗

⟨𝐸⟩ (ends) [𝑖, 𝑗]𝑅𝐸 [𝑖′, 𝑗 ′] ⇔ 𝑗 = 𝑗 ′ ∧ 𝑖 < 𝑖′

⟨𝐷⟩ (during) [𝑖, 𝑗]𝑅𝐷 [𝑖′, 𝑗 ′] ⇔ 𝑖 < 𝑖′ ∧ 𝑗 ′ < 𝑗

⟨𝑂⟩ (overlaps) [𝑖, 𝑗]𝑅𝑂 [𝑖′, 𝑗 ′] ⇔ 𝑖 < 𝑖′ < 𝑗 < 𝑗 ′

Table 1 Allen’s relation and their notation within HS; equality and inverse relations are omitted.

an alphabet P = {𝑝1, . . . , 𝑝𝑘}, a propositional rule is an object of the type 𝜌 : 𝑋 ⇒ 𝑌 ,128

where 𝑋 ⊂ P is called antecedent, 𝑌 ⊂ P is called consequent, and 𝑋 ∩ 𝑌 = ∅. The use129

of the non-logical symbol ⇒ emphasizes the fact that association rules are not logical130

implications. Following the standard literature, interesting association rules are extracted131

via statistical considerations: a set of propositional literals, typically named items or itemset132

in this scenario [1], 𝑋 ∪ 𝑌 is considered interesting when it is frequent, that is, if it occurs133

more often than a predetermined threshold referred to as minimum support, and a rule134

𝑋 ⇒ 𝑌 is extracted if the ratio between the support of 𝑋 and that of 𝑋 ∪ 𝑌 is higher135

than another predetermined threshold known as minimum confidence. Most association136

rule mining techniques leverage the computation of support and confidence measures (i.e.,137

the support-confidence framework) to mitigate the combinatorial explosion due to itemsets138

generation, which is a #P problem [23, 24], but many of the generated rules could still be139

filtered out as non-interesting; on top of objective measures, the practice suggests that the140

interestingness level of a rule should always be double-checked by an expert. However, a141

wide variety of objective interestingness measures and statistical tests can be used to reveal142

important insights about the rules; such measures are based on the definition of support and143

can augment the support-confidence framework to further reduce the number of rules in the144

output.145

The idea of extending association rules to the case of non-tabular data, generally repre-146

sented as modal data, that is, in which every instance is described as graph, was first introduced147

in [15, 20], in which the generalization of the known rule extraction algorithms APRIORI148

and FP-Growth were proposed (respectively ModalAPRIORI and ModalFP-Growth). From149

this general setting, it is possible to specialize the rule definition and extraction to the150

(qualitative) temporal case, on the line of [3].151

Temporal association rule extraction. While classical association rules are designed152

for propositional patterns to emerge (i.e., items are not temporalized, and their co-presence153

is assumed to be contemporary), temporal association rules are designed to generalize this154

idea to patterns with a temporal component. The natural choice to describe temporalized155

co-occurrence of events or patterns with a duration is interval temporal logic. The standard156

choice for temporal logic of intervals is the modal logic defined over Allen’s interval-interval157

relations. Given a linear order 𝐷, an interval on 𝐷 is defined as a pair 𝑖 < 𝑗 , where 𝑖, 𝑗 ∈ 𝐷.158

Allen’s relations relate any two intervals in one of thirteen possible binary relations, as shown159

in Tab. 1, where we omit equality and inverse relations for simplicity.160

▶ Definition 4. Let X = {𝐴, 𝐴, 𝐿, 𝐿, 𝐵, 𝐵, 𝐸, 𝐸, 𝐷, 𝐷,𝑂,𝑂, =}. The well-formed formulas of161

the Halpern and Shoham Modal Logic of Time Intervals (HS, for short) are built from an162

alphabet P, the classical connectives ∨ and ¬, and a modality for each Allen’s interval relation,163
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as follows:164

𝜑 ::= 𝑝 | ¬𝜑 | 𝜑 ∨ 𝜑 | ⟨𝑋⟩𝜑,165

where 𝑝 ∈ P and 𝑋 ∈ X. The other propositional connectives and constants (i.e., 𝜓1 ∧ 𝜓2 ≡166

¬𝜓1 ∨ ¬𝜓2, 𝜓1 → 𝜓2 ≡ ¬𝜓1 ∨ 𝜓2 and ⊤ = 𝑝 ∨ ¬𝑝), as well as, for each 𝑋 ∈ X, the universal167

modality [𝑋] (e.g., [𝐴]𝜑 ≡ ¬⟨𝐴⟩¬𝜑), can be derived in the standard way.168

A formula of HS is interpreted over an interval model, defined as pair T = ⟨𝐷,𝑉⟩4, where169

𝑉 : 𝐼 (𝐷) → 2P is a valuation function from the set 𝐼 (𝐷) = {[𝑖, 𝑗], 𝑖 < 𝑗 , 𝑖, 𝑗 ∈ 𝐷} of all170

intervals that can be built on 𝐷.171

▶ Definition 5. Given an interval model T based on the alphabet P, an interval [𝑖, 𝑗] in172

it, and a formula 𝜑 of HS, we say that 𝜑 is satisfied by T at [𝑖, 𝑗], and we denote it by173

T , [𝑖, 𝑗] ⊩ 𝜑, if and only if:174

𝑝 ∈ 𝑉 ( [𝑖, 𝑗]) iff 𝜑 = 𝑝;
T , [𝑖, 𝑗] ⊮ 𝜓 iff 𝜑 = ¬𝜓;
T , [𝑖, 𝑗] ⊩ 𝜓 or T , [𝑖, 𝑗] ⊩ 𝜉 iff 𝜑 = 𝜓 ∨ 𝜉;
T , [𝑖′, 𝑗 ′] ⊩ 𝜓 for some [𝑖′, 𝑗 ′] such that [𝑖, 𝑗]𝑅𝑋 [𝑖′, 𝑗 ′] iff 𝜑 = ⟨𝑋⟩𝜓

175

Interval temporal logic gives us a way to naturally describe temporal association rules, as176

time series can be naturally seen as interval models. Let 𝔗 = {T1,T2, . . . ,T𝑚} be a set of177

(multivariate) time series, or temporal dataset, and fix a propositional alphabet P; let us also178

assume that each time series in 𝔗 is based on the same temporal domain 𝐷. Each single179

multivariate time series T (e.g., the temporal history of an hospitalized patient) is a collection180

of 𝑛 time series 𝑇1, . . . , 𝑇𝑛 (e.g., the collection of all time-changing values that describe an181

hospitalized patient); elements of P are naturally associated to a specific time series (e.g.,182

the truth value of high fever is associated to the, time-changing, body temperature of an183

hospitalized patient). In this way, if T is a multivariate time series (i.e., an interval model),184

[𝑖, 𝑗] is an interval, and 𝜑 an interval formula, the notion of T , [𝑖, 𝑗] ⊩ 𝜑 can be interpreted185

as the notion of the multivariate time series T satisfies 𝜑 at [𝑖, 𝑗].186

▶ Definition 6. Given an alphabet P, a temporal literal (or temporal item) 𝜆 is defined by187

the following grammar:188

𝜆 ::= 𝑝 | ⟨𝑋⟩𝜆 | [𝑋]𝜆,189

where 𝑝 ∈ P and 𝑋 ∈ X. The set of all possible temporal items is denoted by ΛP .190

A temporal itemset is a set of temporal items, and temporal rules antecedents and consequents191

are temporal itemsets. The notion of support is generalized to the temporal case, as follows.192

▶ Definition 7. Let 𝔗 be a temporal dataset, ΛP be the set of temporal items built on the193

alphabet P, and let 𝑋 ⊆ ΛP be an itemset. The local support of 𝑋 on some instance T ∈ 𝔗194

is defined as the relative frequency of 𝑋 holding on all the possible intervals:195

𝑙𝑠𝑢𝑝𝑝(T , 𝑋) = |{[𝑖, 𝑗] ∈ 𝐼 (𝐷) | T , [𝑖, 𝑗] ⊩ 𝑋}|
|𝐼 (𝐷) | ,196

4 We intentionally use the same symbol for interval model and multivariate time series, to convey the
idea that the latter can be interpreted as the former.
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23:6 Temporal Association Rules from Motifs

and, given a certain minimum local support threshold 𝑠𝑙 ∈ (0, 1] ⊂ R, the global support of 𝑋197

on 𝔗 relatively to 𝑠𝑙 is defined as:198

𝑔𝑠𝑢𝑝𝑝𝑠𝑙 (𝔗, 𝑋) = |{T ∈ 𝔗 | 𝑙𝑠𝑢𝑝𝑝(T , 𝑋) ≥ 𝑠𝑙}|
|𝔗 | .199

ModalAPRIORI and ModalFP-Growth can be used to extract temporal patterns as a particular200

case of modal patterns; an itemset 𝑋 is said to be frequent on 𝔗 or globally frequent if its201

global support is greater than a minimum global support threshold 𝑠𝑔, and after extracting202

all the globally frequent itemsets and using them to generate rules, we need to judge which of203

the latter are association rules and which are not, employing, as already mentioned, suitable204

interestingness measures. This has been suggested, for example, in [15], where it is proposed205

to use standard temporal information extraction functions to devise a suitable propositional206

alphabet. The primary characteristics of such information extraction functions is that they207

can be applied to an interval of time and reduce the subseries in that interval to a scalar208

value. In this work, we show how, in general, this strategy can be improved by replacing209

scalars with motifs (and, specifically, snippets) for alphabet building; however, this requires210

adaptation to the mining algorithms.211

3 Extracting Temporal Association Rule from Motifs212

Alphabet discovery in time series: naïve approach. In order to generalize association213

rule mining to the temporal scenario, we need to enhance the support-confidence framework214

by integrating a suitable strategy to capture relevant temporal aspects from data. The notion215

of feature extraction function is naturally applied to this case. Given a multivariate time216

series T = {𝑇1, . . . , 𝑇𝑛}, one can consider a set of functions F = {𝐹1, . . . , 𝐹𝑘}, where each217

function 𝐹 is defined as 𝐹 : R𝑑 → R for some natural value 𝑑 ≤ 𝑁, and then apply such218

functions to all intervals. Via arbitrarily selecting thresholds 𝛼, 𝛽, one can then create an219

alphabet220

P = {𝛼 ≤ 𝐹 (𝑇) ≤ 𝛽 | 𝐹 ∈ F , 𝑇 ∈ T , 𝛼 ∈ R ∪ {−∞}, 𝛽 ∈ R ∪ {+∞}}.221

Letters in P are immediately interpreted over intervals, as follows: given an interval [𝑖, 𝑗],222

𝐹 is applied to the segment 𝑇𝑖, 𝑗 to obtain a scalar value that is then compared with 𝛼 and223

𝛽. Theoretically speaking, this definition allows mining temporal association rules; indeed,224

given an interval model T , an alphabet P and the set of temporal items ΛP built over P,225

the local support semantics is well-defined.226

Unfortunately, this approach may introduce strong bias during model checking, leading227

to a sterile mining.228

▶ Example 8. Consider Fig. 1, in which the feature extraction function maximum is applied229

to every subsequence of the time series depicted on the left. As a result, we obtain the same230

scalar for every interval including [2, 3].231

Behaviours such as the above one constitute a major obstacle towards interpretability, possibly232

leading to association rules with promising interestingness levels which, however, encode233

trivialities. More refined feature extraction functions (e.g., hctsa [6], catch22 [13]) do not234

mitigate this problem, since it is inherently caused by our alphabet definition.235

Alphabet discovery in time series: an approach with motifs. In order to avoid236

degenerate situations such as the one described in the above example, we can modify the237

definition of alphabet. To this end, we first extend the notion of representative motifs for238
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1 5

1 4

2 5

1 3

2 4

3 5

1 2

2 3

3 4

4 5

Figure 1 Maximum feature extraction function applied to the time series in blue on the left, and
to all its subintervals. The value of such function, which is highlighted in red, is identical in every
interval including [2, 3].

motif extraction from a temporal dataset, via a generalized full distance matrix 𝑀𝔗,𝑁 ,𝑠. This239

allows us to obtain an collection of representative motifs from a temporal dataset 𝔗:240

A𝔗 = {𝜇 | 𝜇 is representative in 𝔗}.241

Then, fixed a distance function 𝛿 and a constant 𝛼, we define a motif-based temporal alphabet242

as:243

P = {𝛿(𝑇, 𝜇) ≤ 𝛼 | 𝑇 ∈ 𝔗, 𝜇 ∈ A𝔗 , 𝛼 ∈ R}.244

As in the previous case, letters in P have an intuitive and immediate interpretation on245

intervals: a given 𝑝 ∈ P is true on a given segment 𝑇𝑖 𝑗 if and only if the behaviour of 𝑇246

within the segment is close enough to the motif 𝜇 encapsulated by 𝑝.247

▶ Example 9. Consider the example in Fig. 2. The two individual time series represent,248

respectively, the position of the right hand on the 𝑦-axis (𝑇1) and on the 𝑥-axis (𝑇2),249

in the context of a body-tracking data analysis exercise whose aim is to describe some250

specific movement in the most rigorous manner. Assume that motifs 𝜇1 and 𝜇2 had been251

extracted from a temporal dataset 𝔗 of similar movements. We define two temporal literals252

𝑝 ::= 𝛿(𝑇1, 𝜇1) ≤ 1.0 and 𝜆 ::= ⟨𝐵⟩𝛿(𝑇2, 𝜇2) ≤ 1.0, where 𝛿 is the 𝑍-normalized Euclidean253

distance and ⟨𝐵⟩ is the Allen’s relation begins, and consider an hypothetical association rule254

𝐴 ::= 𝑝 ⇒ 𝜆. As it can be seen, such a rule can easily be translated to natural language,255

without being limited by the hidden redundancy of a naïve alphabet definition: when the256

right-hand moves away from the hip to the right at an approximate speed of 0.9 distance units257

per time unit, for two consecutive time units, then the movement has started with the same258

hand being at the highest point.259

Temporal association rules discovery with motifs. In order to lift the motif-based260

definition of alphabet to the idea of association rule extraction, we need to be able to compute261

the support of temporal items and itemsets built on it. Unfortunately, simply applying our262

original approach based on local support does not provide a suitable solution.263

CVIT 2016



23:8 Temporal Association Rules from Motifs

1 2 3 4
0

0.5

1

1.5

2

Time

Va
lu

e

Bivariate time series 𝑀 = {𝑇1, 𝑇2} and distances w.r.t. motifs {𝜇1, 𝜇2}

𝑇1
𝜇1
𝑇2
𝜇2

Figure 2 Bivariate time series consisting of 𝑇1 and 𝑇2, respectively in blue and green, and two
motifs 𝜇1 and 𝜇2, respectively in red and magenta. Since |𝜇1 | = 1, the euclidean distance 𝛿(𝑇1, 𝜇1)
is calculated for all the 1-length intervals of 𝑇1. When the distance is small enough, it is highlighted
with a colored area. Similar applies for 𝑇2 and 𝜇2.

▶ Example 10. Consider, again, the situation depicted in Fig. 2, and the problem of264

computing the local support of 𝑝, 𝜆, and {𝑝, 𝜆} as defined in Ex. 9. Since motifs have a265

predetermined length in terms of time units, 𝑝, for instance, would have a counter-intuitive266

upper bound of 2
6 , since it cannot hold on intervals of length different from 2.267

Computing the local support of an item as the ratio between the number of intervals that268

satisfy that item and the number of intervals that may potentially satisfy it would be the269

simplest solution to the above problem; for items without temporal modal connectives, in270

particular, this requires to examine only intervals of the same length as the motif encapsulated271

by it. This solution, however, may not be optimal for temporal items that are not literals, as272

it may cause an unwanted effect similar to the one that emerged with the naïve alphabet. A273

more elaborate solution requires the idea of anchored itemset.274

▶ Definition 11. An itemset 𝑋 is said to be anchored if and only if contains at least one275

non-temporal item, and all non-temporal items in it are based on motifs of the same length;276

the subset Ω ⊂ 𝑋 of non-temporal items is called anchor of 𝑋. Let 𝑙 (Ω) denote the length of277

the interval on which an anchor may hold.278

In this way, the length of intervals that may potentially satisfy the entire itemset is fixed,279

allowing us to define the frequency of that itemset in a truly representative way.280

▶ Definition 12. Let 𝔗 be a temporal dataset, ΛP be the set of temporal items built on the281

motif-based alphabet P, let 𝑋 ⊆ ΛP be an anchored itemset, and let Ω ⊂ 𝑋 be its anchor.282

The motif-based local support of 𝑋 on some instance T ∈ 𝔗 is defined as:283

𝑚𝑏𝑙𝑠𝑢𝑝𝑝(T , 𝑋) = |{[𝑖, 𝑗] ∈ 𝐼 (𝐷) | 𝑇, [𝑖, 𝑗] ⊩ 𝑋}|
|{[𝑖, 𝑗] ∈ 𝐼 (𝐷) | 𝑗 − 𝑖 + 1 = 𝑙 (Ω)}| ,284

and, given a certain minimum motif-based local support threshold 𝑠𝑙 ∈ (0, 1] ⊂ R, the285

motif-based global support of 𝑋 on 𝔗 relatively to 𝑠𝑙 is defined as:286

𝑚𝑏𝑔𝑠𝑢𝑝𝑝𝑠𝑙 (𝔗, 𝑋) = |{T ∈ 𝔗 | 𝑚𝑏𝑙𝑠𝑢𝑝𝑝(T , 𝑋) ≥ 𝑠𝑙}|
|𝔗 | .287
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Using the modified version support, and computing the other interesting measures based288

on it, we now perform a series of rule extraction experiments.289

4 Experiments290

In our experiments, we consider two well-known public datasets concerning human action291

and gait recognition, namely NATOPS [19] and HuGaDB [4]; given the intuitive nature of292

the data, extracted rules will be interpretable even to the non-expert, unlike other scenarios.293

Although both datasets are labeled and designed for classification, our objective is to describe294

common patterns within the same class, and to express them in natural language.295

The experimental setup is as follows. First of all, we establish the values for the minimum296

local and global support, and for the minimum confidence, respectively 𝑠𝑙 , 𝑠𝑔 and 𝑐. Given a297

dataset, we focus on all the instances belonging to a specific class and concatenate (each298

time series of) its instances. We then proceed to extract the most representative motifs from299

each time series by leveraging the algorithm Snippet-Finder proposed in [11]; to this end, we300

set reasonable lengths for potential motifs. After the motif extraction phase, we define an301

alphabet P that takes into account each motif 𝜇, the 𝑍-normalized Euclidean distance 𝛿,302

and a threshold 𝛼, the latter being the 𝑠𝑔-th percentile of the values obtained by computing303

𝛿 between 𝜇 and all subintervals of the corresponding time series. We define the set of304

temporal items ΛP by considering every Allen’s relation, with the exception of ⟨𝐿⟩, which305

tends to introduce trivial redundancies in local support computation (i.e., fixed an anchor,306

the intervals covered by later relation are significantly more numerous than those covered by307

the other relations).308

We choose to mine frequent itemsets by leveraging ModalAPRIORI, generating all309

emerging association rules starting from closed itemsets, that is, itemsets whose none of their310

immediate supersets have exactly the same support, and filtering out the less interesting311

ones using both confidence and lift. Lift, in particular, is defined as the ratio between the312

confidence of a rule and the global support of its consequent; it assesses the degree to which313

the occurrence of the antecedent “lifts” the occurrence of the consequent, that is, how much314

they are positively correlated (i.e., lift is greater than one) or independent [9]; it has an315

immediate modal and temporal counterpart, given that its only based on support.316

In order to keep the amount of generated rules below a reasonable number, we limit the317

length of each frequent itemset, as well as the length of both the consequent and antecedent318

of each rule, and impose the latter to be anchored.319

Experiment 1: NATOPS. Each NATOPS instance is a time series of 51 timestamps,320

representing the 𝑥, 𝑦, 𝑧 coordinates of sensors placed on various body parts of subjects321

performing aircraft handling signals. Since the time between two consecutive timestamps322

is approximately five hundredths of a second, we decided to extract the top 5 motifs with323

length 10 and the top 3 with length 20, in order to capture qualitatively appreciable patterns;324

shorter subsequences would bring little informativeness, while longer one would be too coarse.325

NATOPS signals are standardized in the Naval Air Training and Operating Procedures326

Standardization (NATOPS) manual. The dataset includes several classes, but we choose327

focus on three for simplicity, namely I have command, Not clear and Locked wings, whose328

typical signals are depicted in Figure 3.329

In Tab. 2, rules are encoded as follows. First, each literal is formatted in a compact330

manner, omitting any reference to motifs and thresholds, as well as the distance function:331

𝑥, 𝑦, 𝑧 indicates coordinates, with subscripts indicating body parts (𝑟 is right, 𝑙 is left, ℎ is332
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Figure 3 Three typical movements of NATOPS, namely I have command, Not clear and Locked
wings. The x-axis encodes left (low values) and right positions for each considered body part of
the operator, while the y-axis encodes down (low values) and high; the z-axis is not represented
for simplicity. In the leftmost figure, the operator traces the blue arc with his right hand, starting
from the rest position, up until stretching the arm above the head, while the right elbow follows as
indicated by the red signal. In the middle figure, both right hand and elbow follows a movement
similar to that just described, but the right hand stops at the height of the shoulder before returning
to rest position; during the part of the movement highlighted with the blue dots, the thumb is
oriented toward the floor. In the rightmost figure, the blue and red signals are similar to those in
the leftmost figure, but the left arm, in orange, pivots on the left elbow, in violet, to touch the right
elbow with the left hand.

Rule Target class Measures

𝑌
𝑢𝑝
𝑟𝑒 ∧ 𝑍

𝑓 𝑟𝑜𝑛𝑡

𝑟ℎ
⇒ ⟨𝑂⟩𝑥𝑙𝑒 𝑓 𝑡&𝑖𝑛𝑣𝑒𝑟𝑡

𝑟ℎ
∧ ⟨𝐵⟩𝑦𝑟𝑒𝑠𝑡&𝑢𝑝

𝑟𝑒 I have command 𝑐 = 1.0, l = 6.70

𝑍
𝑓 𝑟𝑜𝑛𝑡
𝑟𝑒 ∧ ⟨𝐴⟩𝑍𝑟𝑒𝑡𝑟𝑎𝑐𝑡

𝑟ℎ
⇒ ⟨𝐴⟩𝑍𝑟𝑒𝑡𝑟𝑎𝑐𝑡𝑟𝑒 I have command 𝑐 = 1.0, l = 4.0

𝑌
𝑢𝑝&𝑑𝑜𝑤𝑛
𝑟𝑒 ⇒ ⟨𝐷⟩𝑥𝑟𝑒𝑠𝑡&𝑟𝑖𝑔ℎ𝑡

𝑟ℎ
∧ ⟨𝐸⟩𝑦𝑑𝑜𝑤𝑛

𝑟𝑒 I have command 𝑐 = 0.48, l = 3.22

𝑋
𝑟𝑖𝑔ℎ𝑡

𝑟ℎ
∧ 𝑋

𝑟𝑖𝑔ℎ𝑡
𝑟𝑒 ⇒ ⟨𝐵⟩𝑦𝑟𝑒𝑠𝑡&𝑑𝑜𝑤𝑛

𝑟𝑡 Not clear 𝑐 = 0.81, l = 5.40

𝑌𝑑𝑜𝑤𝑛
𝑟𝑡 ∧ ⟨𝐴⟩𝑥𝑙𝑒 𝑓 𝑡

𝑟ℎ
⇒ ⟨𝑂⟩𝑦𝑟𝑒𝑠𝑡

𝑟ℎ
∧ 𝑧

𝑓 𝑟𝑜𝑛𝑡
𝑟𝑒 Not clear 𝑐 = 0.60, l = 3.27

𝑌
𝑢𝑝

𝑙𝑒
∧ 𝑋

𝑟𝑖𝑔ℎ𝑡
𝑟𝑒 ∧ ⟨𝐷⟩𝑦𝑢𝑝

𝑟ℎ
⇒ 𝑌

𝑢𝑝

𝑙ℎ
∧ ⟨𝐷⟩𝑧𝑟𝑒𝑡𝑟𝑎𝑐𝑡

𝑙𝑒
Lock wings 𝑐 = 0.86, l = 4.29

𝑍𝑟𝑒𝑠𝑡
𝑙ℎ

∧ ⟨𝐷⟩𝑦𝑑𝑜𝑤𝑛
𝑙ℎ

⇒ ⟨𝐸⟩𝑥𝑙𝑒 𝑓 𝑡
𝑙ℎ

Lock wings 𝑐 = 1.0, l = 3.75

Table 2 Association rules extracted from NATOPS dataset, their associated class and the value
of confidence and lift meaningfulness measures. Each literal is formatted in a compact manner,
omitting any reference to motifs and thresholds, as well as the distance function. First, 𝑥, 𝑦, 𝑧

indicates coordinates, with subscripts indicating body parts (𝑟: right, 𝑙: left, ℎ: hand, 𝑒: elbow,
𝑡: thumb) and where superscripts give an intuition about the movement captured by the motif
underlying the literal. Second, an uppercase literal denotes a longer movement (20 time unites,
approximately 1 second), and a lowercase one denotes a shorter one (10).

hand, 𝑒 is elbow, and 𝑡 is thumb), and superscripts give an intuition about the movement333

captured by the motif underlying the literal. Second, uppercase (resp., lowercase) coordinates334

denote the length of the underlying motif: uppercase indicates 20 time units (approximately335

1 second), and lowercase indicates 10 time units (approximately 1
2 of a second).336

Let us the most interesting association rules in Tab. 2, which show high confidence and337

lift and would not probably be naturally deducible from an inattentive high-level description338

of the corresponding movement. The first rule of the class I have command can be read339

whenever the right hand of the operator is completely stretching in front of him/her and their340
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Figure 4 (Left) Location of sensors in HuGaDB. (Right) Two normalized motifs of length 50,
referring to the right thigh x-axis and extracted from Walking and Running classes. In the former
class, the thigh accelerates up and down more gently w.r.t. Running, where the signal is steeper.

elbow goes all the way up on the y-axis, the same elbow started the movement range in a rest341

position and, near the end of the movement range, the operator’s right hand is moving to the342

left, but will soon change direction. The first rule of the Not clear class can be translated343

to when both the right hand and the right elbow of the operator are completely stretching to344

the right, the thumb starts being relaxed but it is rotated downward after a couple of tenths345

of a second; the second rule of the same class, instead, describes the descending part of the346

movement. Finally, regarding the class Lock wings, its first rule tells us that if the right hand347

completes its upward movement during the (slower) upward movement of the left elbow and348

the opening of the right elbow to the right, then the left hand is going up too and, while doing349

so, the left elbow slightly retracts on the z-axis w.r.t. the hip; the second rule tells us that350

when the left elbow aligns with the hip while the left hand is going down, then the right351

hand is moving to the left in the last half second of the movement.352

Experiment 2: HuGaDB Data in the Database for Human Gait Analysis consists of353

combined activities performed by various performers and recorded continually; for instance, a354

participant might have walked, then ran and finally sat down. Data is collected from a body355

sensor network of six wearable inertial sensors (accelerometers and gyroscopes) located on356

the right and left thighs, shins and feet, and two EMG sensors placed on both quadriceps to357

measure muscle activity, as shown in Fig. 4 (left-hand side). Different activities are segmented358

through different labels and, among all the possible gait segments, we focus on Walking and359

Running gaits.360

We manipulated the dataset to obtain a set of instances where each time series has 100361

timestamps and the variables are limited to the 𝑥 and 𝑧 axis for feet and thighs; operationally,362

the 𝑦 axis can be ignored, considering our target gaits. Upon observing of the signals, we363

decided to extract the top 3 representative motifs of lengths 25 and 50 time units. An364

example of two extracted motifs of length 50, both referring to the right thigh in the two365

different gaits, are depicted in Fig. 4 (right-hand side): the motif extracted from Walking366

gait consists of a gentle acceleration up and down, while the motif for Running gait is faster367

and steeper.368

Similarly to the case of NATOPS, we summarize some of the most promising association369

rules in Table 3. The first two rules concern the class Walking, and states that when the right370

foot accelerates forward (backwards), then the left (right) thigh accelerates upward immediately371

after. Note that, since confidence is not so high, these rules may depend on the personal gait372

of a performer. For example, both rules do not hold if the walk is performed by keeping the373
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Rule Target class Measures

𝑥
𝑓 𝑟𝑜𝑛𝑡

𝑟 𝑓
⇒ ⟨𝐴⟩𝑥𝑢𝑝

𝑙𝑡
Walking 𝑐 = 0.43, l = 3.21

𝑥𝑏𝑎𝑐𝑘
𝑙 𝑓

⇒ ⟨𝐴⟩𝑥𝑢𝑝𝑟𝑡 Walking 𝑐 = 0.33, l = 2.50

𝑋
𝑓 𝑟𝑜𝑛𝑡

𝑟 𝑓
⇒ ⟨𝐷⟩𝑥𝑢𝑝𝑟𝑡 ∧ ⟨𝐷⟩𝑥𝑑𝑜𝑤𝑛

𝑟𝑡 Walking 𝑐 = 1.0, l = 1.67

𝑋
𝑓 𝑟𝑜𝑛𝑡

𝑙 𝑓
⇒ ⟨𝐷⟩𝑥𝑢𝑝

𝑙𝑡
∧ ⟨𝐷⟩𝑥𝑑𝑜𝑤𝑛

𝑙𝑡
Walking 𝑐 = 1.0, l = 1.50

𝑍
𝑓 𝑏𝑥2
𝑟𝑡 ∧ 𝑍

𝑢𝑝&𝑑𝑜𝑤𝑛

𝑟 𝑓
∧ ⟨𝐷⟩𝑧𝑑𝑜𝑤𝑛&𝑠𝑡𝑜𝑝

𝑙 𝑓
⇒ ⟨𝐷⟩𝑥 𝑓 𝑎𝑠𝑡_ 𝑓 𝑟𝑜𝑛𝑡

𝑟 𝑓
Running 𝑐 = 1.0, l = 7.0

𝑋
𝑏 𝑓 𝑥2
𝑙 𝑓

∧ ⟨𝐷⟩𝑥𝑑𝑜𝑤𝑛&𝑢𝑝&𝑑𝑜𝑤𝑛

𝑙𝑡
⇒ 𝑍

𝑏 𝑓 𝑥2
𝑙𝑡

∧ 𝑋
𝑓 𝑏𝑥2
𝑟 𝑓

Running 𝑐 = 0.67, l = 2.33

𝑥
𝑏𝑎𝑐𝑘& 𝑓 𝑟𝑜𝑛𝑡

𝑙 𝑓
⇒ ⟨𝐴⟩𝑧 𝑓 𝑟𝑜𝑛𝑡&𝑏𝑒ℎ𝑖𝑛𝑑

𝑟𝑡 Running 𝑐 = 0.25, l = 1.75

Table 3 Association rules extracted from HuGaDB dataset, their associated class and the value
of confidence and lift meaningfulness measures. As before, literals codify their meaning in a compact
manner. First, 𝑥, 𝑧 indicates the axis, with subscripts indicating body parts (𝑟: right, 𝑙: left, 𝑓 : foot,
𝑡: thigh). Second, superscripts suggest the movement, and in particular, 𝑓 𝑏𝑥2 indicates the double
repetition of a sudden frontal acceleration followed by a strong backward acceleration (and similarly
for 𝑏 𝑓 𝑥2). As before, uppercase literals denote longer motifs (50 time units), and lowercase ones
shorter motifs (25).

toes low. This symmetry emerges also in the next two rules, which could be rewritten as374

while the right (left) foot accelerates forward, the right (left) thigh accelerates up and down at375

a certain point.376

In the case of the class Running, the first rule shows very high confidence and lift, thus377

resulting independent of the personal idiosyncrasies of each candidate. It could be translated378

to if the right thigh springs off forward and backward two times, the right foot goes up and379

down and, at a certain point, the left foot accelerates downward and then stays still for380

approximately 10 time units, then it means that the right foot considerably accelerates forward381

at a certain point. The second rule highlights the complementarity between the left leg,382

iteratively accelerating backwards and forward, and the right foot accelerates in opposite383

directions. The last rule describes a trait for a particular kind of run, that is, a light ride in384

which the right foot waits for the left foot, instead of moving complementarily at the same385

time.386

5 Conclusions387

In this paper, we addressed the limitations of existing temporal symbolic learning methods388

for rule extraction by introducing a motif-based approach to temporal alphabet definition.389

By leveraging motifs-based frequently recurring patterns in time series, we proposed a more390

interpretable and structurally robust framework for mining temporal association rules. Our391

method resolves the biases introduced by naive alphabet definitions and enhances the semantic392

clarity of extracted rules. We formalized the concept of anchored itemsets and introduced a393

novel definition of motif-based local and global support, ensuring that the mined patterns394

are both meaningful and computationally tractable. Experimental validation on temporal395

datasets demonstrates the expressiveness and interpretability of the extracted rules, showing396

promise for applications in explainable temporal data analysis.397
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